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Wing Flutter Boundary Prediction Using Unsteady Euler

Aerodynamic Method

Elizabeth M. Lee-Rausch™ and John T. Batinat
NASA Langley Research Center, Hampton, Virginia 23681

Modifications to an existing three-dimensional, implicit, upwind Euler/Reynolds-averaged Navier-Stokes code
(CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were
previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the
addition of the structural equations of metion for their simultaneous time-integration with the governing flow
equations. This article gives a brief description of these modifications and presents unsteady calculations that
check the modifications to the code. Euler flutter results for an isolated 45-deg swept-back wing are compared
with experimental data for seven freestream Mach numbers that define the flutter boundary over a range of
Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for free-
stream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results
predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and
unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics
of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the

computational flutter boundary.

Nomenclature

generalized aerodynamic force resulting from
pressure induced by mode j acting through mode i
= root semichord

pressure coefficient

root chord

= generalized damping of mode i

reduced frequency, (wc/2U.)

generalized stiffness of mode i

freestream Mach number

= measured wing panel mass

= generalized mass of mode i

generalized aerodynamic force computed by
integrating the pressure weighted by the structural
mode |

generalized displacement of mode |

dimensional time

flutter speed

streamwise freestream speed

= Joad vector

= volume of a truncated cone having streamwise root
chord as lower base diameter, streamwise tip as
upper base diameter, and panel span as height
state vector

= steady-state angle of attack

= integral of the state-transition matrix

= mass ratio, (+#i1/pv)

= damping associated with mode j of the aeroelastic
response

state-transition matrix
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w = angular frequency

w, = frequency associated with mode j of the aeroelastic
response

w, = uncoupled natural frequency of the wing first

torsion mode

Introduction

ESEARCH during the last decade on the application

of computational fluid dynamics (CFD) methods to
unsteady flows and aeroelastic analysis has been rapidly
progressing. Edwards and Malone! recently presented a sur-
vey on the status of computational methods for unsteady
aerodynamic and aeroelastic analysis with an emphasis on
methods for transonic flows. The transonic speed range has
been a main focus of activity because flutter dynamic pres-
sures are typically critical (lower) in this speed range. Much
of this research, especially for three-dimensional configu-
rations, has focused on the development of finite difference
methods for the solution of the transonic small disturbance
(TSD) and full potential (FP) equations.! One reason for
the focus on the FP and TSD methods is that the reduced
memory and run-time requirements of these methods in
comparison with the higher-order methods have made them
more viable for use in aeroelastic analyses of three-dimen-
sional configurations. Edwards and Malone! reported on
13 aeroelastic studies of flexible wings and flexible wings/
rigid body configurations that utilized the TSD and FP
methods. These studies, which compare flutter boundary
calculations with experimental data, provide important ap-
plications of these CFD methods.

Reference 1 points out that many critical challenges facing
computational aeroelasticity will require the modeling of in-
creasingly more complex flow physics. To meet these chal-
lenges, researchers have begun to develop higher-order meth-
ods involving the Euler and Navier-Stokes equations for
unsteady aerodynamic and aeroelastic analysis. With recent
advances in algorithm development and computer hardware,
higher-order methods utilizing the Euler and Navier-Stokes
equations have been used in three-dimensional aeroelastic
applications® !'; however, the number of these applications
lags behind those utilizing the TSD and FP methods, largely
in part because of their increased computational require-
ments.
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The research described in Refs. 2—11 represents important
steps in the development of three-dimensional Euler and Na-
vier-Stokes methods for aeroelastic analysis. However, con-
tinuing studies are needed to validate these methods for the
prediction of aeroelastic response and flutter. Robinson et
al.? performed time-marching flutter calculations for an iso-
lated 45-deg swept-back wing using an Euler code. A novel
aspect of the capability described in Ref. 3 was the deforming
mesh algorithm that was used to move the mesh so that it
conformed continuously to the instantaneous position of the
wing. The results presented compared favorably with the ex-
perimental data and with results from a transonic small dis-
turbance code for the single flutter point analyzed.

The purpose of the present work is to further demonstrate
and assess the capability presented in Ref. 3 by completing
the flutter boundary for the simple, well-defined, isolated 45-
deg swept-back wing contiguration using the Euler equations.
The wing analyzed in these studies is the first AGARD stan-
dard aeroelastic configuration for dynamic response, and its
flutter data is an accepted set with which to test codes.!? In
Ref. 3, modifications were made to an existing three-dimen-
sional, unsteady Euler/Reynolds-averaged Navier-Stokes code
(CFL3D Version 1.0) for the aeroelastic analysis of wings.
These modifications included the incorporation of a deform-
ing mesh algorithm and the addition of the structural equa-
tions of motion for their simultaneous time-integration with
the governing flow equations. The deforming mesh algorithm
and the structural equations of motion described in Ref. 3
have been added to the most recently released version of
CFL3D, Version 2.1, by the present authors. This article gives
a brief description of these modifications and presents un-
steady calculations that check the modifications to the code.
Results from calculations performed for a rigid wing under-
going forced pitching and plunging motions are presented to
test the performance of the deforming mesh algorithm. Aero-
elastic results for the 45-deg swept-back wing at a freestream
Mach number of 0.9 are compared to those presented in Ref.
3 to check the addition to the structural equations of motion.
Calculated flutter results for the same 45-deg swept-back wing
are compared with the experimental data for seven freestream
Mach numbers that define the flutter boundary over a range
of Mach number from 0.499 to 1.14. Steady-state Mach con-
tours of the initial flowfields are also included in the discussion
of the aeroelastic results to illustrate the basic flow charac-
teristics of the time-marching flutter calculations at selected
freestream Mach numbers. Instantaneous surface pressure
contours during an aeroelastic transient at M, = 0.99 are
presented to demonstrate changes in the flowfield that are
induced by the aeroelastic motions.

Upwind Euler/Reynolds-Averaged
Navier-Stokes Algorithm

The time-dependent Euler equations are solved within the
CFL3D'** code by a three-factor, implicit, finite volume al-
gorithm based on upwind-biased spatial differencing. The al-
gorithm, which is a cell-centered scheme, uses upwind dif-
ferencing based on either flux-vector splitting or flux-difference
splitting. Both types of upwind differencing account for the
local wave-propagation characteristics of the flow and sharply
capture shock waves. Also, because these schemes are nat-
urally dissipative, additional artificial dissipation terms are
not necessary. Several types of flux-limiting are available within
the code to prevent oscillations in the solution near shock
waves. These oscillations are typically found in results from
higher-order schemes. For unsteady cases, the original al-
gorithm contains the necessary metric terms for a rigidly trans-
lating and rotating mesh that moves without deforming. For
cases involving a deforming mesh, however, an additional
term accounting for the change in cell volume must be in-
cluded in the time-discretization of the governing equations.
This modification is implemented as described in Ref. 3. The
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aeroelastic equations of motion were implemented in the more
recent Version 2.1. In addition to other improvements, this
more recent version of the code contains several options for
computing multiblock solutions that will be utilized in future
computations.

Deforming Mesh Algorithm

In the time-marching aeroelastic calculations, the mesh must
be updated at every time level so that it conforms to the
aeroelastically deformed shape of the wing. Because the
aeroelastic motion of the wing may be general in nature and
is not known a priori, a general mesh updating procedure is
necessary. One such method, the deforming mesh algorithm,
models the mesh as a network of springs and solves the static
equilibrium equations for this network to determine the new
locations of the mesh grid points. This algorithm was originally
developed by Batina'® for tetrahedral cells and extended by
Robinson et al.* for hexahedral cells. The edge of each hex-
ahedral cell is modeled as a spring whose stiffness is inversely
proportional to the length of the edge raised to a power. In
order to control cell shearing and to prevent the collapse of
the cell, diagonal springs are added along the faces of each
cell. Similarly, the stiffness of the diagonal springs is also
inversely proportional to the length of the diagonal raised to
a power. As suggested in Ref. 3, a power of three was used
in the present calculations.

At each time level, the grid points on the outer boundary
are held fixed, and the displacement of the wing surface is
specified. For aeroelastic calculations, the displacement is de-
termined from the integration of the structural equations of
motions. The new locations of the interior grid points are then
determined by solving the static equilibrium equations that
result from a summation of forces in the x-, y-, and z-coor-
dinate directions at each grid point. These static equilibrium
equations are solved using a predictor-corrector method. The
new grid point locations are first predicted by an extrapolation
from the previous two time levels and then corrected by using
several Jacobi iterations of the static equilibrium equations.
In the present calculations four Jacobi iterations are sufficient
to move the mesh.

Time-Marching Aeroelastic Analysis

The time-marching aeroelastic procedure used in this study
is typical of those currently in use.™'"-'° In general, the equa-
tions are solved by assuming that the general motion of the
wing can be described by a separation of time and space
variables in a finite modal series. This modal series consists
of the summation of the free vibration modes weighted by
the generalized displacements. After applying Lagrange’s
equations to this system, the aeroelastic equations of motion
can then be written for each vibration mode i as

m;g; + c.q; + kg, = Q, 1)

The superscript dots in Eq. (1) represent differentiation with
respect to time. The fluid forces as determined by the CFD
code are coupled with the structural equations of motion through
the generalized aerodynamic forces.

The solution procedure implemented in this study for in-
tegrating Eq. (1) in time is that described by Edwards et al.'"-'®
Equation (1) is written as a linear state equation such that

X, = Ax;, + Bu, 2)

where A and B are coefficient matrices that result from the
change of variables x; = [¢,¢;]7, and u; is the nondimensional
representation of the generalized force Q,. Equation (2) is
integrated in time using a modified state-transition matrix
structural integrator'” implemented as a predictor-corrector
procedure. The prediction for x7 ', £+, is given by

0t = dx? + OBQBu? — ur )2 (3)
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where @ is the state-transition matrix, and @ is the integral
of the state-transition matrix from time step n ton + 1. The
predicted value of the generalized displacement 7' ' is used
to update the mesh for the next flowfield calculation, which
is used in turn to evaluate the nondimensional generalized
force @7 ''. These values are then used in the corrector step
to determine x7 "', given by

xpt!l = dxy + OByt + up)2 (4)

In a time-marching aeroelastic analysis, the calculation of
each flutter point is begun by obtaining a static aeroelastic
solution about the wing. In this study, a steady-state solution
is first computed about the rigid wing. The next step is to
allow the wing to deform to the steady loads until a static
aeroelastic solution is obtained. The calculation of the static
deformation is obtained using the aeroelastic equations of
motion. For this time-marching calculation, however, the
structural damping ratio of the wing is set to a number such
that the dynamic system is near critically damped. The aero-
elastic equations of motion are then marched simultaneously
in time with the governing flow equations until the wing no
longer deforms under the aerodynamic loads. When the sys-
tem is near critically damped, this calculation requires less
computational time than if no damping were added. The static
aeroelastic solution is then used as the starting point for the
time-marching dynamic aeroelastic solution. Since the wing
analyzed in the present work has a symmetric airfoil section,
at zero degree angle of attack this configuration will have no
static deflection. Therefore, for this wing, the steady, rigid
solutions could be used as the starting solutions for the aero-
elastic time-marching calculations.

In order to bracket the flutter point, the static aeroelastic
and dynamic aeroelastic computations are computed at sev-
eral values of dynamic pressure (typically three values), which
ranged from 80 to 120% of the experimental values, depend-
ing on the freestream Mach number. In each of the dynamic
aeroelastic calculations, the motion of the wing is initiated by
specifying a small initial velocity for the first two modes. The
resulting transients are analyzed for their damping and fre-
quency content with the modal identification technique of
Bennett and Desmarais.'” The computed flutter dynamic pres-
sure can then be determined after interpolating the specified
dynamic pressures as a function of damping for the dominant
mode at flutter. The flutter frequency is obtained in the same
manner.

Pulse Transfer-Function Analysis

Generalized aerodynamics forces (GAFs) can be obtained
by calculating several cycles of a forced harmonic oscillation
and using the last cycle of oscillation to determine the load.
This requires one time-marching calculation for each value of
reduced frequency and each mode of interest. In contrast. the
GAFs may be determined for a wide range of reduced fre-
quency in a single time-marching calculation for each mode
using the pulse transfer-function analysis. In the pulse anal-
ysis, the unsteady force is computed indirectly from the re-
sponse of the flowfield due to a wing motion that is repre-
sented by a smoothly varying, exponentially shaped pulse. A
fast Fourier transform of the unsteady force is divided by the
Fourier transform of the displacement to obtain the GAF.
The pulse transfer-function analysis has been previously em-
ployed to determine the GAFs, which are used in aeroelastic
analyses.? ™2 22 Results presented in Refs. 3, 16, and 20-22
have shown that the analysis is valid for predicting the small
perturbation response about a nonlinear flowfield.

Wind-Tunnel Model Description
The wing being analyzed in this study is the first AGARD
standard aeroelastic configuration for dynamic response. Wing
445.6,'2 which was tested in the Transonic Dynamics Tunnel

(TDT) at NASA Langley Research Center.” The Wing 445.6
has a quarter-chord sweep angle of 45 deg, a panel aspect
ratio of 1.65, a taper ratio of 0.66, and a NACA 65A004
airfoil section. A planform view of this wing is shown in Fig.
1. Several different models of the Wing 445.6 were tested in
the TDT, including both full span and semispan models. The
model used in this study was one of the semispan wind-tunnel-
wall-mounted models that was constructed of laminated ma-
hogany. In order to obtain flutter data for a wide range of
Mach number and density conditions in the TDT, holes were
drilled through several of the mahogany wings to reduce their
stiffness. The aerodynamic shape of the original wing was
preserved by filling the holes with rigid foam plastic. The
model designated as “WEAK3” in Ref. 23 is analyzed herein.
The flutter data for this model tested in air is reported in Ref.
23 over a range of Mach number from 0.499 to 1.141.

The Wing 445.6 is modeled structurally using the first four
natural vibration modes that are illustrated in Fig. 2. Figure
2 shows the deflection contours associated with the natural
modes. These modes that are numbered 1-4 represent first
bending, first torsion, second bending, and second torsion,
respectively, as calculated by a finite element analysis.>* The
modes have natural frequencies that range from 9.6 Hz for
the first bending mode to 91.54 Hz for the second torsion
mode. As suggested in Ref. 23, the experimentally deter-
mined modal frequencies were used in the time-marching flut-
ter analysis. For the cases considered in this study, no struc-
tural damping is included in the aeroelastic equations of motion
(¢; = 0 for all modes).

Fig. 1 Planform view of Wing 445.6.

Mode 1, f{ =9.60 Hz Mode 2, f2 =38.17 Hz

Mode 3, f3 = 4835 Hz Mode 4, f4 =91.54 Hz

Fig. 2 Deflection contours of the natural vibrations modes for Wing
445.6.
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Results and Discussion

Results are presented in this section for calculations about
the Wing 445.6. All of the computational results were ob-
tained using a 193 x 33 x 41 C-H-type grid with 193 points
wrapped around the wing and its wake (129 points on the
wing surface), 41 points distributed from the wing root to the
spanwise boundary (25 points on the wing surface), and 33
points distributed radially from the wing surface to the outer
boundary. This mesh topoplogy was chosen rather than a C-
O-type topology because the wind-tunnel model has a sheared-
off tip. A partial view of the surface mesh on the wing and
symmetry plane is shown in Fig. 3. Its outer boundaries extend
10 local chord lengths to the upstream and downstream
boundaries, 10 local chord lengths to the upper and lower
boundaries, and 1 semispan length off of the tip. Note that
this grid is identical to the one used in Ref. 3. A steady-state
grid resolution study at M, = 0.96 and 1.141 indicated that
at these higher Mach numbers further refinement of the grid
is required in the spanwise direction to completely resolve the
spanwise gradients. However, the 193 x 33 x 41 grid is
sufficient to provide accurate aeroelastic results for all of the
Mach numbers analyzed.

For all of the calculations, the Euler equations are solved
using flux-vector splitting and a smooth flux-limiter. Conver-
gence to steady state was accelerated using local time-step-
ping, mesh sequencing, and multigrid cycling. For time-
marching calculations, the nondimensional global time-step
(based on the root chord and the freestream speed of sound)
was (.05456. The in-core memory requirement for this grid
was 25 MWords on a Cray-2 computer, which is 15.6 MWords
over what is required for the unmodified CFL3D Version 2.1.
Recent coding modifications have reduced the additional
memory requirements for the aeroelastic version by approx-
imately 50%, and so the current grid would now require 17.4
Mw. Each of the steady-state calculations required approxi-
mately 3—4 h of CPU time on a Cray-2 computer to converge
the solution to an acceptable level (6 orders of magnitude).
Aeroelastic transients were computed at each dynamic pres-
sure for approximately 2 cycles of the lowest frequency modal
motion. These calculations typically required 8 h of CPU time.
Since aeroelastic transients were computed for three different
values of dynamic pressure at each freestream Mach number,
the total computational cost for each flutter point (including
the steady-state solution) was approximately 28 h of CPU
time.

Pulse Transfer-Function Results

The generalized forces for the Wing 445.6 at M., = 0.9
were computed using the pulse transfer-function analysis

Fig. 3 Partial view of the 193 X 33 X 41 computational grid on the
wing surface and symmetry plane.
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method described in a preceding section. The pulse calcula-
tions were restarted from a steady-state flow condition at an
angle of attack of @« = 0 deg. A plunging motion and a pitching
motion about the root quarter-chord, which are defined as
modes 4 and 8. respectively, were analyzed. These simple
“modes’ were chosen in order that the motion of the wing
could be simulated not only by the deforming mesh algorithm,
but also by a rigid translation and rotation of the grid. The
maximum amplitude of the plunging motion was 0.01 root
chord lengths, and the maximum pitch amplitude was 1 deg.
The results of the pulse analyses, shown in Fig. 4, are plotted
in terms of the real and imaginary components of the unsteady
forces as a function of k, which is defined by (wb/U.)). The
generalized force A, is the lift due to plunge, A, is the lift
coefficient due to pitching, A,, is the pitching moment due
to plunge, and A,, is the pitching moment due to pitch. As
shown in Fig. 4, the forces from the pulse analysis obtained
using the deforming mesh agree very well with the forces
obtained using the rigidly moving mesh. This good agreement
between the results verifies, for small motions, the three-
dimenstonal deforming mesh capability that was implemented
in the code.

Flutter Results

Flutter characteristics were determined for seven free-
stream Mach numbers, M, = 0.499, 0.678, 0.900, 0.960, 0.990,
1.072, and 1.141, at « = (-deg angle of attack. Each time-
marching calculation was restarted from the steady-state so-
lution about the rigid wing, and the motion of the wing was
initiated by specifying a small initial velocity for the first two
modes. The resulting transients were analyzed for their damp-
ing and frequency content with the model identification tech-
nique that was previously described. The computed flutter
dynamic pressure and frequency were determined by inter-
polating the specified dynamic pressures and the computed
frequencies to the zero damping value of the flutter mode.
The flutter mode for all freestream Mach numbers considered
in this study was dominated by motion in the first bending
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Fig. 4 Comparison of generalized aerodynamic forces for the rigid
pitch and plunge of Wing 445.6 at M, = 0.9 and « = 0 deg.
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mode. A summary of the computed flutter characteristics in
terms of flutter speed index (U,./bw"\/u) and nondimensional
flutter frequency ratio (w/w,) is shown in Table 1. For M, =
0.9, Ref. 3 reports a computed flutter speed index of .353
and a computed flutter frequency ratio of 0.42. These results
agree very well with those shown in Table 1 for M. = 0.9,
which verifies the addition of the structural equations of mo-
tion to CFL3D version 2.1.

The computed flutter characteristics are compared with the
experimentally measured values of flutter speed index and
flutter frequency ratio in Fig. 5. The experimental data defines
a typical transonic flutter *dip” with the bottom near M, =
1.0. At the subsonic freestream Mach numbers (M, = 0.499
and 0.678), the computed flutter speed indexes agree well
with the experimental values, while the computed frequency
ratios are slightly larger than the experimental values. It is
interesting to note that at these subsonic freestream Mach
numbers the computed flutter results are characterized by
“hard™ flutter crossings. In other words, small changes in
dynamic pressure result in large changes in the damping of
the flutter mode. At M., = 0.9 and 0.96, the computed flutter
speed indexes are less than the experimental values and the
frequency ratios agree well with the experimental values. The
computed flutter results at these freestream Mach numbers
are characterized by a “mild” flutter crossing. Although there

Table 1 Summary of computed flutter results for

Wing 445.6
Flutter speed Flutter frequency
M, index ratio
0.499 0.439 0.597
0.678 0.417 0.539
0.900 0.352 0.425
0.960 0.275 0.343
0.990 0.310 0.373
1.072 0.466 0.541
1.141 0.660 0.764

O Experiment (Ref. 23)
A Estimated (Ref. 23)

_ B-Computed
0.8

0.6

Flutter
Speed
Index

0.2~

G.0 1 | |

0.6

Freq.
Ratio

o.4r—

0.2+

0.0 | | |
0.2 0.6 1.0 1.4

Mach Number

Fig. 5 Comparison of Euler flutter predictions with experimental
data for Wing 445.6.

was no experimental flutter point determined at M., = 0.99,
computational results are included to aid in identifying the
bottom of the flutter dip. The computational results at M, =
0.99 are compared in Fig. 5 to estimated values of flutter
speed and frequency determined from the faired curves in
Fig. 16 of Ref. 23. These faired curves were based on the
experimentally determined flutter points, the experimentally
determined no-flutter track, and analytic calculations shown
in Ref. 23 and are considered to be of reasonable accuracy.?*
The computational results at M., = 0.99, as well as those at
M, = 1.072 and 1.141, indicate a premature rise in the com-
putational flutter boundary as compared with the experimen-
tal boundary. Although the boundary is more sensitive to
freestream Mach number in this range, the computed flutter
results are still characterized by a mild flutter crossing.

Computational results for this configuration obtained with
linear theory and TSD methods were previously reported in
Ref. 16. In Ref. 16, three sets of flutter results were presented:
1) results from a linear theory subsonic kernel-function pro-
gram, 2) results using the linear potential equation and mod-
eling the wing aerodynamically as a flat plate, and 3) results
using the complete (nonlinear) TSD equation and including
wing thickness. The flutter speed index and flutter frequency
from the subsonic kernel-function and the potential equation
compare well with the experimental data over the range of
freestream Mach numbers from 0.338 to 1.141. (Note that the
subsonic kernel-function results are limited to the subsonic
freestream Mach numbers.) Results from the nonlinear TSD
equation for the subsonic freestream Mach numbers 0.678,
0.901, 0.96 indicate that the flutter speed index is decreased
by 1, 5, and 19%, respectively, from the experimental results
with a similar decrease in the flutter frequency. These results
are similar to the trend shown by the current computations
in Fig. 5. Subsequent unpublished calculations by the authors
of Ref. 16 indicate that flutter results for the supersonic free-
stream Mach numbers that were obtained with the nonlinear
TSD equation are highly nonconservative. This trend is also
consistent with the results shown in Fig. 5. It is counterin-
tuitive that the higher-order methods utilizing the TSD and
Euler equations should produce flutter results that compare
less favorably with the experimental results than with the
results based on linear methods. However, it is important to
note that the modeling of the flow physics is incomplete even
when using the TSD and Euler equations. The existence and
effect of highly nonlinear flow phenomena such as strong
shocks and viscous boundary layers must be investigated be-
fore any conclusions can be drawn.

Steady-state Mach contours of the initial flowfields on the
upper wing surface are shown in Figs. 6a—6d to illustrate the
basic flow characteristics at the selected freestream Mach
numbers of 0.96, 0.99, 1.072, and 1.141, where time-marching
flutter calculations were made. Mach contours for M., = 0.499,
0.678, and 0.900, which are not shown, indicate a smooth
expansion and recompression of the flow from the leading
edge to the trailing edge, with very little variation in the
spanwise direction and no supercritical flow. Mach contours
shown in Fig. 6a indicate that at M, = 0.96 an area of su-
percritical flow has formed on the wing. This area of super-
critical flow does not terminate with a shock. Figure 6b shows
that at M, = 0.99 the areas of supercritical flow have ex-
panded, and a normal shock has formed near the tip of the
wing at approximately 25% of the local chord. Mach contours
for M., = 1.702 and 1.141, shown in Figs. 6¢ and 6d, respec-
tively, indicate that with further increases in freestream Mach
number, the normal shock transitions to an oblique shock
located further downstream on the outboard portion of the
wing at approximately 70% of the local chord. Also, at M.
= 1.141, the spanwise extent of the oblique shock has in-
creased to approximately 50% of the outboard portion of the
wing. Rapid changes in the steady-state flow conditions from
M. = 0.96 to 1.141 are indicated by the formation and move-
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Fig. 6 Comparison of steady-state Mach contours on the upper sur-
face of Wing 445.6. M, = a) 0.96, b) 0.99, ¢) 1.072, and d) 1.141.
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Fig. 7 Time history of the first generalized displacement for the Wing
445.6 at M, = 0.99 and a = 0 deg.
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Fig. 8 Instantaneous surface contours of the pressure coefficient at
time T, for the Wing 445.6 at M. = 0.99 and « = 0 deg: a) upper
and b) lower surfaces.

Fig. 9 Instantaneous surface contours of the pressure coefficient at
time 7T, for the Wing 445.6 at M. = 0.99 and a = 0 deg: a) upper
and b) lower surfaces.

ment of a shock at the tip of the wing. This range of freestream
Mach number also corresponds to the range of Mach numbers
where the computed flutter boundary rapidly rises (see Fig.
5). Therefore, small variations due to errors associated with
modeling deficiencies and computational deviations could be
expected to have a large effect on the final flutter speed and
frequency. Modeling deficiencies could be due to the neglect
of the viscous effects. Computationally, these errors might be
due to a fack of spatial convergence.
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The rapid changes in the steady-state flowfield conditions
from M, = 0.96 to 1.141 suggest that, for a given freestream
Mach number in this range, the flow characteristics can also
change rapidly during an aeroelastic transient. Figure 7 shows
the time history of the first generalized displacement ¢, for a
time-marching aeroelastic transient at M., = 0.99 and at a
freestream dynamic pressure of 64.12 psf, which is 1.12 times
the estimated experimental flutter dynamic pressure. Recall
that ¢, corresponds to the first bending mode that is the dom-
inant component of the flutter mode. The damping and fre-
quency content of this aeroelastic trnsient indicates that the
wing is dynamically unstable at this condition. Instantaneous
surface contours of C, are shown in Figs. 8 and 9 for the times
T, and T, respectively, which are indicated in Fig. 7. Upper
and lower surface pressures are shown at these points in time
with AC, = 0.02. At T,, contours on the upper surface in-
dicate that an upper surface shock has disappeared, while
contours on the lower surface indicate that a lower surface
shock has strengthened and moved slightly downstream. Sim-
ilarly, at 7T,, the opposite has occurred. The shock has weak-
ened on the lower surface and strengthened on the upper
surface. Figures 8 and 9 therefore show that during the aero-
elastic transient, rapid changes in surface pressures occur due
to the formation and disappearance of a normal shock on the
tip of the wing. Figures 8 and 9 also illustrate an unusual
shock behavior during the aeroelastic transient in that there
is little chordwise movement of the shock as it strengthens
and weakens. For two-dimensional airfoils, significant shock
weakening is usually accompanied by large shock motion.

Conclusions

Modifications to an existing three-dimensional, implicit,
upwind Euler/Reynolds-averaged Navier-Stokes code (CFL3D
Version 2.1) for the aeroelastic analysis of wings was de-
scribed. These modifications included the incorporation of a
deforming mesh algorithm and the addition of the structural
equations of motion for their simultaneous time-integration
with the governing flow equations. Euler results from calcu-
lations performed for a rigid wing undergoing forced pitching
and plunging motions were presented to check the deform-
ing mesh algorithm. Aeroelastic Euler results for a 45-deg
swept-back wing at a freestream Mach number of 0.9 were
compared to those presented in Ref. 3 to check the addition
of the structural equations of motion. Calculated flutter re-
sults for the same 45-deg swept-back wing were compared
with the experimental data for seven freestream Mach num-
bers that define the flutter boundary over a range of Mach
number from 0.499 to 1.141. These comparisons showed good
agreement in flutter characteristics for freestream Mach num-
bers below unity. For freestream Mach numbers above unity,
the computed aeroelastic results predicted a premature rise
in the flutter boundary as compared with the experimental
boundary. Steady-state Mach contours of the initial flowfields
illustrated rapid changes in the basic flow characteristics from
M., = 0.96 to 1.141, which is indicated by the formation and
movement of a shock near the tip of the wing. Instantaneous
surface pressure contours during an aeroelastic transient at
M. = 0.99 also demonstrated significant changes in the flow-
field due to the formation and disappearance of a normal
shock on the tip of the wing that is induced by the aeroelastic
motions at this freestream Mach number.
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